Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            Abstract We have modeled the velocity-resolved reverberation response of the Hβbroad emission line in nine Seyfert 1 galaxies from the Lick Active Galactic Nucleus (AGN) Monitoring Project 2016 sample, drawing inferences on the geometry and structure of the low-ionization broad-line region (BLR) and the mass of the central supermassive black hole. Overall, we find that the HβBLR is generally a thick disk viewed at low to moderate inclination angles. We combine our sample with prior studies and investigate line-profile shape dependence, such as , on BLR structure and kinematics and search for any BLR luminosity-dependent trends. We find marginal evidence for an anticorrelation between the profile shape of the broad Hβemission line and the Eddington ratio, when using the rms spectrum. However, we do not find any luminosity-dependent trends, and conclude that AGNs have diverse BLR structure and kinematics, consistent with the hypothesis of transient AGN/BLR conditions rather than systematic trends.more » « less
- 
            Abstract We carried out spectroscopic monitoring of 21 low-redshift Seyfert 1 galaxies using the Kast double spectrograph on the 3 m Shane telescope at Lick Observatory from 2016 April to 2017 May. Targeting active galactic nuclei (AGNs) with luminosities ofλLλ(5100 Å) ≈ 1044erg s−1and predicted Hβlags of ∼20–30 days or black hole masses of 107–108.5M⊙, our campaign probes luminosity-dependent trends in broad-line region (BLR) structure and dynamics as well as to improve calibrations for single-epoch estimates of quasar black hole masses. Here we present the first results from the campaign, including Hβemission-line light curves, integrated Hβlag times (8–30 days) measured againstV-band continuum light curves, velocity-resolved reverberation lags, line widths of the broad Hβcomponents, and virial black hole mass estimates (107.1–108.1M⊙). Our results add significantly to the number of existing velocity-resolved lag measurements and reveal a diversity of BLR gas kinematics at moderately high AGN luminosities. AGN continuum luminosity appears not to be correlated with the type of kinematics that its BLR gas may exhibit. Follow-up direct modeling of this data set will elucidate the detailed kinematics and provide robust dynamical black hole masses for several objects in this sample.more » « less
- 
            Abstract The biaxial van der Waals semiconductor α‐phase molybdenum trioxide (α‐MoO3) has recently received significant attention due to its ability to support highly anisotropic phonon polaritons (PhPs)—infrared (IR) light coupled to lattice vibrations—offering an unprecedented platform for controlling the flow of energy at the nanoscale. However, to fully exploit the extraordinary IR response of this material, an accurate dielectric function is required. Here, the accurate IR dielectric function of α‐MoO3is reported by modeling far‐field polarized IR reflectance spectra acquired on a single thick flake of this material. Unique to this work, the far‐field model is refined by contrasting the experimental dispersion and damping of PhPs, revealed by polariton interferometry using scattering‐type scanning near‐field optical microscopy (s‐SNOM) on thin flakes of α‐MoO3, with analytical and transfer‐matrix calculations, as well as full‐wave simulations. Through these correlative efforts, exceptional quantitative agreement is attained to both far‐ and near‐field properties for multiple flakes, thus providing strong verification of the accuracy of this model, while offering a novel approach to extracting dielectric functions of nanomaterials. In addition, by employing density functional theory (DFT), insights into the various vibrational states dictating the dielectric function model and the intriguing optical properties of α‐MoO3are provided.more » « less
- 
            Abstract The semiconductor tracker (SCT) is one of the tracking systems for charged particles in the ATLAS detector. It consists of 4088 silicon strip sensor modules.During Run 2 (2015–2018) the Large Hadron Collider delivered an integrated luminosity of 156 fb -1 to the ATLAS experiment at a centre-of-mass proton-proton collision energy of 13 TeV. The instantaneous luminosity and pile-up conditions were far in excess of those assumed in the original design of the SCT detector.Due to improvements to the data acquisition system, the SCT operated stably throughout Run 2.It was available for 99.9% of the integrated luminosity and achieved a data-quality efficiency of 99.85%.Detailed studies have been made of the leakage current in SCT modules and the evolution of the full depletion voltage, which are used to study the impact of radiation damage to the modules.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
